Sun-tracking imaging system for intra-hour DNI forecasts

نویسندگان

  • Yinghao Chu
  • Mengying Li
  • Carlos F.M. Coimbra
چکیده

A Sun-tracking imaging system is implemented for minimizing circumsolar image distortion for improved short-term solar irradiance forecasts. This sky-imaging system consists of a fisheye digital camera mounted on an automatic solar tracker that follows the diurnal pattern of the Sun. The Sun is located at the geometric center of the sky images where the fisheye distortion is minimized. Images from this new system provide more information about the circumsolar sky cover, which provides critical information for intra-hour solar forecasts, particularly for direct normal irradiance. An automatic masking algorithm has been developed to separate the sky area from ground obstacles and the image edges for each image that is collected. Then numerical image features are extracted from the segmented sky area and are used as exogenous inputs to MultiLayer Perceptron (MLP) models for direct normal irradiance forecasts. Sixty-seven days of irradiance and image measurements are used to train, optimize, and assess the MLP-based forecast models for solar irradiance. The results show that the MLP forecasts based on the newly proposed sky-imaging system significantly outperform the reference models in terms of statistical metrics and forecast skill, particularly for shorter horizons, achieving forecast skills 18%e50% higher than the skills of a reference MLP-based model that is based on a zenith-pointed, stationary sky-imaging system. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intra-hour DNI forecasting based on cloud tracking image analysis

We describe an image processing methodology using Total Sky Imagers (TSIs) to generate short-term forecasts of Direct Normal Irradiance (DNI) at the ground level. Specifically, we are interested in forecasting 1-min averaged DNI values for time horizons varying from 3 to 15 min. This work describes several sky image processing techniques relevant to solar forecasting, including velocity field c...

متن کامل

Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts

This work compares the performance of machine learning methods (k-nearest-neighbors (kNN) and gradient boosting (GB)) in intra-hour forecasting of global (GHI) and direct normal (DNI) irradiances. The models predict the GHI and DNI and the corresponding prediction intervals. The data used in this work include pyranometer measurements of GHI and DNI and sky images. Point forecasts are evaluated ...

متن کامل

Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning

We propose novel smart forecasting models for Direct Normal Irradiance (DNI) that combine sky image processing with Artificial Neural Network (ANN) optimization schemes. The forecasting models, which were developed for over 6 months of intra-minute imaging and irradiance measurements, are used to predict 1 min average DNI for specific time horizons of 5 and 10 min. We discuss optimal models for...

متن کامل

How predictable is DNI? An evaluation of hour ahead and day ahead DNI forecasts from four different providers

Forecast DNI values in hourly resolution for one day ahead are evaluated by a comparison with pyrheliometer ground measurements. Three months of such day ahead forecasts from four different providers for a site close to Questa, NM, USA are analyzed firstly by calculating the RMSE and the mean bias error. Secondly, cumulative distributions of the DNI forecast errors are calculated as they better...

متن کامل

Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances

This work proposes a novel forecast methodology for intra-hour solar irradiance based on optimized pattern recognition from local telemetry and sky imaging. The model, based on the k-nearest-neighbors (kNN) algorithm, predicts the global (GHI) and direct (DNI) components of irradiance for horizons ranging from 5 min up to 30 min, and the corresponding uncertainty prediction intervals. An optimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016